
Automatic Track Generation for High-End Racing Games

Using Evolutionary Computation

Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi Member IEEE

Abstract— We investigate the application of evolutionary
computation to the automatic generation of tracks for high-end
racing games. The idea underlying our approach is that diversity
is a major source of challenge/interest for racing tracks and,
eventually, might play a key role in contributing to the player’s
fun. In particular, we focus on the diversity of a track in terms
of its shape (i.e., the number and the assortments of turns
and straights it contains), and in terms of driving experience it
provides (i.e., the range of speeds achievable while driving on
the track). We define two fitness functions that capture our idea
of diversity as the entropy of the track’s curvature and speed
profiles. We apply both a single-objective and a multi-objective
real-coded genetic algorithm to evolve tracks involving both
a wide variety of turns and straights and also a large range
of driving speeds. The results we report show that both single-
objective and multi-objective approaches can successfully evolve
tracks with a high degree of diversity both in terms of shape
and achievable speeds.

I. INTRODUCTION

The automatic generation of game content has been a

central issue for the game industry since the early 1980s,

when the limitation of existing platforms did not allow

the distribution of large amounts of pre-designed content

(typically game levels). Accordingly, ad-hoc algorithmic pro-

cedures were widely applied to generate game content on-

the-fly, so as to provide infinite levels of fun [1], and the

field of procedural content generation (or PCG) was born.

Nowadays, procedural content generation is widely applied

by the game industry and its importance for the development

has dramatically increased (i) to control the design costs as

games get bigger and bigger, (ii) to retain the crucial ability

to make changes throughout the production process [2], and

also (iii) to allow the emergence of new game types centered

around content generation (e.g., Maxim’s Spore) [3].

Procedural content generation is usually based on a con-

structive approach [3] in which human designers develop and

tune ad-hoc algorithmic procedures to generate huge amount

of interesting and diverse game content (e.g., SpeedTree1,

Subversion2). In the recent years however, researchers have

been investigating generative-and-test approaches [3], in

which methods of evolutionary computation are exploited

to automatically discover innovative and interesting content.

Daniele Loiacono (loiacono@elet.polimi.it), Luigi Cardamone (carda-
mone@elet.polimi.it), and Pier Luca Lanzi (lanzi@elet.polimi.it) are with
the Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Milano, Italy. Pier Luca Lanzi (lanzi@illigal.ge.uiuc.edu) is also member of
the Illinois Genetic Algorithm Laboratory (IlliGAL), University of Illinois
at Urbana Champaign, Urbana, IL 61801, USA.

1http://www.speedtree.com/
2http://www.introversion.co.uk/subversion/ (Introversion Software)

This research area has been recently dubbed Search-Based

Procedural Content Generation [3].

Racing games, a rather popular game genre, can be classi-

fied into two main categories. Some racing games reproduce

an actual event (for instance, EA F1-2010 reproduces the

2010 F1 championship) and therefore involve predefined

game content such as specific car models (e.g., the Ferrari

F2010), drivers (e.g., Fernando Alonso) and tracks (e.g.,

Monza). Others do not reproduce a specific event but take

place in a fictional game universe and thus focus on the

driving experience itself. These games are not bounded to

a predefined reality (e.g., the F1 2010 championship) and

therefore provide a rich set of car models, tracks, and

scenarios. Accordingly, in these games, the content plays

a key role for the commercial success of the title (see for

instance, Trackmania by Nadeo3 and rFactor by Image Space

Inc.4). In this paper, we focus on the latter type of racing

games, involving a fictional game universe, and investigate

the application of search-based procedural content generation

to evolve tracks for a high-end car racing simulator, The

Open Source Racing Car Simulator (TORCS) [4].

Our approach is inspired by the seminal work of Togelius

et al. [5], [6], [7], who applied evolutionary computation

to evolve tracks for a simple two-dimensional car racing

game. However, while Togelius et al. [5], [6], [7] address the

evolution of personalized content for a target player, in this

work, we focus on the evolution of tracks that can provide a

large degree of diversity, in a rather broad sense, while also

being adequately challenging. For this purpose, we extend

the radial representation of Togelius et al. [6] and adapt

it to a high-end simulator like TORCS. We define (i) the

curvature profile of a track, as the distribution of curvature

values of all the track segments, and the (ii) speed profile

of a track, as the distribution of the speed values that a

competitive driver achieves along the track. We finally define

the fitness of a track either as (i) the entropy of its curvature

profile or (ii) the entropy of its speed profile. We apply

both single-objective and multi-objective genetic algorithms

to evolve tracks that maximize these fitness functions. Our

results show that the proposed approach can successfully

evolve a wide variety of feasible TORCS tracks with a large

degree of diversity both in terms of shape and in terms

of achievable speeds. In particular, our results suggest that

multi-objective genetic algorithms are well-suited for this

application and can generate tracks providing the best trade-

3http://www.trackmania.com
4http://www.rfactor.net

off between the two objectives. At the end, we perform a

preliminary validation with human subjects to test whether

there is an agreement between our fitness definitions and

the users’ preferences. Our results suggest that there is a

statistically significant correlation between our metrics and

the preferences expressed by the human subjects.

The paper is organized as follows. At first, in Section II,

we briefly overview the field of Procedural Content Gen-

eration. Then, in Section III, we discuss the evolution of

racing tracks, overview the few published works on this

topic, and we present our approach. Next, in Section IV, we

briefly overview the car racing game we used (TORCS). In

Section V and Section VI we discuss our approach in details

describing our encoding of tracks and the metrics we used

for their evaluation. In Section VII, we present the results

of our experiments while in Section VIII we report on a

preliminary validation we performed with human subjects.

Finally, in Section IX, we draw some conclusions and discuss

future research directions.

II. RELATED WORK

In this section, we provide a brief overview of the two

major areas that deal with the automatic generation of game

content: Procedural Content Generation and Search-Based

Procedural Content Generation [3].

A. Procedural Content Generation

Procedural content generation dates back to the early

1980s when simple algorithmic procedures were applied to

generate huge, possibly infinite, amount of game content

with very limited resources. One of the early example in

this area is Rogue5, an ASCII role-playing game by Michael

Toy and Glenn Wichman in which an unlimited number

of dungeon maps, filled with monsters and treasures, were

procedurally generated on-the-fly [1]. In 1984, the space

trading game Elite6 by Ian Bell and David Braben (Acornsoft

1984) provided an expansive environment with eight galax-

ies, each containing 256 stars. At each location, the player

could fight pirates, dock at a space-station, and trade goods

carried aboard their ship. Apart from providing (for that time)

stunning 3D graphics, Elite also used a procedural approach

to generate the content of each galaxy and needed only few

kilobytes to store the entire universe. In 1989, MidWinter7,

a first-person action role-playing game by Microplay, re-

quired only less than half a megabyte to store a huge post-

apocalyptic scenario spanning for 410000km2. Nowadays,

although the memory limitations are long forgotten, procedu-

ral content generation is still widely used both to reduce the

design costs and to generate those immense scenarios which

would be infeasible for human designers. Recent examples

include, Diablo, Diablo II8, and Sid Meyer’s Civilization9

which apply level-generation methods similar (in principle)

5http://en.wikipedia.org/wiki/Rogue (computer game)
6http://en.wikipedia.org/wiki/Elite (video game)
7http://en.wikipedia.org/wiki/Midwinter (video game)
8http://www.blizzard.com (Blizzard)
9http://www.civilization.com/

to the one used in Rogue [1]. The massively multi-player on-

line space-game Eve Online10 involves a universe generated

using fractal methods, conceptually similar to what was

done in Elite. In the game Spore11, players can create

their own “creature” and procedural methods are applied to

animate the huge variations of possible creature creations.

The game .kkrieger12, developed by the .theprodukkt team,

is an extreme example of procedural content generation as

the entire demo game and all its game content fits into only

97,280 bytes. In Left4Dead13, the enemies and the objects

are generated based on the players movements so that they

will appear outside its view so as to scare the player. In

the sequel, Left4Dead 2, the geometry and the content of

the levels evolve according to the game-play. Borderlands14

provides a huge arsenal of three millions weapons generated

using a single parameter vector [8]; Far Cry 215 applies

procedural content generation for the weather, the day cycle,

and the fire propagation. Subversion exploits a procedural

city generator to create the game world.

More information about procedural content generation is

available at several websites16. Andrew Doull recently wrote

a survey available on line [9].

Procedural content generation methods are also avail-

able as development tools for professionals. For instance,

SpeedTree is a powerful toolkit that can generate whole areas

of 3D vegetation for games, films, and animations, based on

just few parameters.

B. Search-Based Procedural Content Generation

In the recent years, researchers from academia have inves-

tigated generative-and-test approaches for procedural content

generation in which methods of evolutionary computation are

exploited to automatically discover innovative and interesting

content. This research area has been recently named Search-

Based Procedural Content Generation [3].

Hastings et al. [10] introduced NEAT Particles, a modified

version of NEAT [11] which could be applied to inter-

actively evolve complex and interesting graphical effects

to be embedded in computed games so as to enrich their

content. The work was extended in [12] where the authors

introduced the game Galactic Arms Race and provided the

first demonstration of evolutionary content generation in an

on-line multi-player game. In particular, the authors applied

another extension of NEAT, called context-generating NEAT,

to evolve new weapons on-line based on what players used

more often.

Marks and Hom [13] were the first to evolve a set of game

rules to obtain a balanced board game which could be equally

10http://play.eveonline.com/ (CCP)
11http://www.spore.com (Maxis 2008)
12http://www.theprodukkt.com/
13http://www.l4d.com (Valve Corporation)
14http://www.borderlandsthegame.com (Gearbox Software, 2009)
15http://www.fracry2.com (Ubisoft)
16http://groups.google.com/group/proceduralcontent

http://game.itu.dk/pcg/
http://pcgames.fdg2010.org/
http://pcg.wikidot.com

hard to win from either side and rarely ended with a draw.

Togelius et al. [6] combined procedural content generation

principles with an evolutionary algorithm to evolve racing

tracks for a simple 2D game which could fit a target player

profile (see Section III for details). Later, Togelius and

Schmidhuber [14] evolved complete rule sets for games. The

game engine was capable of representing simple Pacman-

style games, and the rule sets described what objects were

in the game, how they moved, interacted (with each other

or with the agent), scoring and timing. The fitness function

measured how fast another evolutionary algorithm could

learn to play the game. The idea behind this fitness function

is that fun is dependent on learning, and that a good game

is not winnable without learning it, but should be learned

quickly.

Frade et al. [15] applied Genetic Programming [16] to

the evolution of terrains for games which would attain the

aesthetic feelings and desired features of the designer. The

approach is currently employed in the game Chapas17.

El-Nasr et al. [17] presented an adaptive lighting de-

sign system, called Adaptive Lighting for Visual Attention

(ALVA), that dynamically adjusts the lighting color and

brightness to enhance visual attention within game envi-

ronments using features identified by neuroscience, psy-

chophysics, and visual design literature.

Zheng and Kudenko [18] presented an approach to gener-

ate commentary to football games in Championship Manager

2008 (CM2008)18 by learning to map game states to high-

level commentary concepts.

In [19], Pedersen and colleagues present novel methods for

player modeling and suggest that the same methods might

be very useful for the automatic generation of game content

More recently, Togelius et al. [20] applied multi-objective

evolutionary computation to evolve maps for StarCraft using

a set of fitness functions evaluating the player’s entertain-

ment. Sorenson and Pasquier [21] presented a generative

approach for level creation following a top-down approach

and validated it using Super Mario Bros. and a 2D adventure

game similar to the Legend of Zelda19.

III. EVOLVING TRACKS FOR RACING GAMES

Racing games are a popular game genre with a rather rich

catalog of titles which ranges from games that reproduce an

actual event to games that take place in a fictional game

universe. The former ones base their commercial success

on the accurate reproduction of reality and therefore their

game-play is restricted to a well-defined set of tracks such

as the ones involved in the F1 championship. In contrast, the

latter ones are not bound to a specific event and therefore

their game-play is not restricted to a specific set of tracks.

Accordingly, they base their commercial success on their

capability of providing a rich set of high quality tracks (e.g.,

17https://forja.unex.es/projects/chapas
18http://www.championshipmanager.co.uk
19Miyamoto, S., Nakago, T., Tezuka, T.: The Legend of Zelda. Nintendo

(1986)

Trackmania by Nadeo) and provide the ideal application

domain for the methods of search-based procedural content

generation. In fact, the possibility of generating a virtually

infinite number of high-quality tracks may represent an

attractive feature for the players, who would get infinite

fun, but also for the developers and the publishers, who can

inexpensively extend the game’s shelf life.

A. Previous Approaches

To the best of our knowledge, Togelius et al. [6] published

the most relevant work about the evolution of tracks for

racing games (see also the first early [5] and the later

survey [7]). In [6], the authors combined procedural content

generation principles and an evolutionary algorithm to evolve

racing tracks that would fit a target player profile. As the

very first step, they designed a test track featuring two long

straights, a long smooth curve, and a sequence of sharp

turns. They uniformly distributed a set of control points

along the track (see Figure 1) and profiled a human player

by recording (i) the number of control points it passed

in a fixed amount of time, (ii) its driving speed and (iii)

its orthogonal deviation on each control point. Then, they

applied an evolutionary algorithm to evolve a controller that

could mimic the player’s driving profile. Finally, they used

the same controller to evolve tracks which would deliver the

right amount of varying challenge to the human player with

fast driving sections.

In [6], Togelius et al. experimented with two main en-

codings. The first encoding represents a track as a set of

points in the Cartesian space while the initial population is

either seeded with random tracks or with just one simple

track resembling a rectangular shape; Gaussian mutation is

applied to perturb the points coordinates. The second radial

encoding represents a track as a set of points with a radial

configuration; the initial population is seeded with circular

tracks in which all the points are at the same distance from

the track center; mutation randomly changes the distance

between the points and the center of the track while the

angular position stays the same. These sets of points are used

to generate the actual track as a sequence of Bezier curves

joined together to form a b-spline.

B. Our Approach

We propose an evolutionary approach for the off-line

generation of TORCS tracks. Our approach differs from the

work of Togelius et al. [5], [6], [7] in several respects.

Our representation extends the radial encoding of [6] by

including two additional parameters to each control point,

namely, the angular coordinate and the slope of the track

tangent line.

Our mapping between the encoding (the genotype) and

the actual track (the phenotype) has to deal with the several

constraints that a high-end simulator like TORCS introduces.

For instance, in the 2D arcade racing game considered

in [6] there is only one constraint on the first and second

derivative of subsequent Bezier curves which must be equal.

However, in a racing game like TORCS, tracks need to be

Fig. 1. The test track used by Togelius et al. [6] to generate the player
profile. The image appears as Figure 2 in the original paper.

Fig. 2. An example of track evolved by Togelius et al. [6]. The image
appears as Figure 5 in the original paper.

believable when placed in the realistic environment of the

simulator. Thus, tracks must be (obviously) closed and their

curvature radius is typically constrained both in range and

in the way it can change. Finally, TORCS introduces an

additional representation constraint since the curvature radius

of turns is piece-wise constant in that curves are defined as

sequences of subsections with a constant curvature radius.

As a consequence, not all the closed b-splines employed in

[6] represent feasible TORCS tracks and therefore the radial

representation of Togelius et al [6] cannot directly applied in

our case.

Our track evaluation focuses on the evolution of tracks

with a large degree of diversity rather than trying to fit a

target player profile as done in [6]. More precisely, we view

track diversity as the main source of challenge and interest

for a racing games and eventually as one of the several

features enabling players’ fun. We focus on two metrics to

capture diversity in terms of (i) the variety of turns and

straights in the track and (ii) the range of driving speed

achievable along the track.

IV. TORCS

The Open Racing Car Simulator (TORCS) [4] is a state-

of-the-art open source car racing simulator which provides

a sophisticated physics engine, full 3D visualization, sev-

eral tracks, car models, and game modes (practice, quick

race, championship, etc.). The car dynamics is accurately

simulated and the physics engine takes into account many

aspects of racing cars such as traction, aerodynamics, fuel

consumption, etc.

Each car is controlled by an automated driver or bot. At

each control step (game tick), a bot can access the current

game state, which includes information about the car and the

track, as well as the information about the other cars on the

track; a bot can control the car using the gas/brake pedals,

the gear stick, and steering wheel.

All the experiments reported in this paper have been

carried out with TORCS 1.3.1.

Fig. 3. A screenshot of the game TORCS.

V. TRACK REPRESENTATION

The representation of game content is a central issue in

Search-Based Procedural Content Generation [3]. In this

section, we briefly describe the TORCS representation of

tracks, i.e., the phenotype, the indirect encoding we designed,

i.e., the genotype, the genetic operators, and the mapping

between genotypes and phenotypes.

A. Track Representation in TORCS (the phenotype)

In TORCS, a track is represented as an ordered list of

segments. Each segment is either a straight or a turn. A

straight is defined by just one parameter, its length. A turn

is defined by (i) the direction (i.e., left or right); (ii) the arc

it covers measured in radians; (iii) its start radius and (iv)

its end radius. In addition, the track must be feasible, i.e., it

must be closed, and therefore the last segment must overlap

the first segment.

B. Track Encoding (the genotype)

The direct encoding of the track representation in TORCS

into a genotype is infeasible since it produces a huge search

space (thus leading to the curse of dimensionality) in which

the feasible solutions (i.e., the closed tracks) are only a tiny

proportion. Accordingly, we employed an indirect encoding

inspired by the work of Togelius et al. [6] on a simple 2D car

racing simulator (see Figure 1). In [6], a track is represented

as a set of control points that the track has to cover; the track

is generated as a sequence of Bezier curves connecting three

control points and, to guarantee smoothness, have the same

first and second derivatives at the point they join.

In this work, we encoded a track as a sequence of control

points ~p = {p1, . . . pn}, where pi consists of three parameters

ri, θi, and si; the parameters ri and θi identify the position

of the control point pi in a polar coordinate system (ri is

the distance from the origin or radial coordinate, θi is the

angular coordinate); si controls the slope of the track tangent

line in pi. Figure 4 shows an example of our encoding:

control points are depicted in red; the blue dot represents the

origin of the polar coordinate system; the curves represent

what generated by the genotype to phenotype mapping

process, discussed in the next section.

C. Genotype to Phenotype Mapping

Algorithm 1 reports the pseudo code of the GENERATE-

TRACK procedure that maps our encoding into the track

representation used in TORCS. The procedure takes as input

the n control points ~p and returns a list ~t of track segments

in TORCS format. Initially, the polar coordinates of the n
control points (i.e., the ri and θi values) are used to compute

the ranges of feasible slope values for each control point

(line 2). If there exist a control point for which there are

no feasible slope values (thus it is not possible to join the

incoming and the outgoing segments in that point), no track

can be derived from ~p and therefore no track (a NULL track)

is returned. Otherwise, given the ranges of feasible slope

values, the actual slope values are computed on the basis of

the si values of the control points ~p (line 6). Next, for each

pair of control points, pi and pi+1, the corresponding TORCS

segment is generated using both the position and the slope

values as constraints. Then, the procedure tries to close the

track by generating one or more segments to connect tn−1 to

t1 (line 9). If the process succeeded (line 10), the resulting

track ~t is returned otherwise a NULL track is returned.

D. Closing the Track

In general, it is not always possible to connect the last

and first control points with just one single segment and

a sequence of straights and turns might be required. Ac-

cordingly, the procedure CLOSETRACK (line 10) considers

Algorithm 1 Generate the track from the genotype

1: procedure GENERATETRACK(~p)

⊲ ~p: array of n control points 〈ri, θi, si〉
⊲ ~t: array of TORCS segments 〈t1, . . . tn〉

2: {Ii} = GENERATESLOPERANGES(~p)

⊲ No feasible slope range

3: if ∃i|Ii = ∅ then

4: return NULL

5: end if

⊲ Select slope values

6: ~α = SELECTSLOPES(~p, {Ii})

⊲ Generate the first n− 1 segments

7: for i = 1 to n− 1 do

ti = GENERATESEGMENT(pi, pi+1, αi)

8: end for

⊲ Close the track

9: tn = CLOSETRACK(tn−1, t1)

⊲ Check whether the procedure failed

10: if CLOSEDTRACK(~t) then

11: return ~t
12: else

13: return NULL

14: end if

15: end procedure

1: procedure GENERATESEGMENT(pi, pj , α)

⊲ Compute the slope of pipj
2: α∗ = SLOPE(pi,pj)

3: if |α− α∗| < ǫ then

return GenerateStraightSegment(pi, pj)

4: else if α < α∗ then

return GenerateLeftTurn(pi, pj , α)

5: else if α > α∗ then

6: return GenerateRightTurn(pi, pj , α)

7: end if

8: end procedure

the parameters defining the end and starting control points

pn and p1 and try different heuristics to generate a feasible

closed track.

E. Genetic Operators

We applied the standard one-point crossover and the rather

typical polynomial mutation operator used in real-valued

genetic algorithms. It is worth noting that, while in the radial

representation in [6] only the radius was mutated in our case

all both the radial and angular position of the gene can be

recombined and mutated.

VI. TRACK EVALUATION

Our approach focuses on the evolution of racing tracks

that can provide both an adequate amount of challenge (as

in [6]), and can also provide a large degree of diversity, in

a rather broad sense. Accordingly, while [6] focuses on the

Fig. 4. Track encoding used by the evolutionary process: the red dots
identify the control points; the blue dot is the origin of the coordinate system;
an example of a feasible slope is also shown. The curves are the result of
the genotype to phenotype mapping process.

fitting of a target player profile, in our case, we focused

on the maximization of the track diversity. In particular,

we can identify four ways of defining diversity in a racing

game. The number, the distribution, and the types of turns

in the track, i.e., the curvature profile, is one of the most

evident source of diversity. The range and the distribution

of the achievable driving speeds over the track, i.e., the

speed profile, is another major source of diversity; in this

respect, it is worth noting that, two tracks with the same

curvature profile (i.e. containing the same number and types

of turns and straights) can have very different shapes and

therefore very different achievable speeds. Also the variety

and the details of the roadbed (e.g., the presence of bumps,

the percentage of gravel and asphalt) might be considered as

a source of diversity. Finally, the surrounding scenery (e.g.,

landscape, trees, etc.) is an additional source of diversity.

In this work, we focused on diversity in terms of shape

and in terms of achievable driving speed and present an

approach to evolve racing tracks that maximize the diversity

in terms of curvature and speed profiles. For this purpose,

we evaluate racing tracks based on the entropy of their

curvature and speed distributions and apply single-objective

and multi-objective real-coded genetic algorithms to evolve

tracks which maximize either one of the two criteria or both

at the same time.

A. Evaluation Based on Curvature Profiles

As the first measure of track diversity, we focused on the

shape and more precisely on the number and types of track

segments. Accordingly, we defined the diversity of a track as

the entropy of its curvature profile C, that is, the distribution

of curvature values of all its track segments. For this purpose,

we initially estimated the range of feasible curvature values

by analyzing all the segments of all the human-designed

tracks available on-line (i.e., those available in the TORCS

distribution and the ones created by the users). Then, we

partitioned the curvature range into sixteen bins (b1, . . . , b16).

Given a new track ~t, we define its curvature diversity as

follows. Firstly, for each track segment ti we compute its

length and its curvature as 1/r̂i, where r̂i is defined as (i)

the radius for a right turn, (ii) the opposite of the radius for a

left turn and (iii) it is considered infinite for a straight. Next,

we generate the track curvature profile C = {c1, . . . , c16},

using the sixteen bins computed from the human-designed

tracks; ci is the percentage of the track with a curvature

that belongs to bin i. Finally, we compute the entropy of its

curvature profile H(C) as,

H(C) = −
16∑

i=1

ci log2 ci (1)

so that H(C) ≥ 0 and H(C) ≤ log2 16. The entropy H(C)
measures the diversity in the distribution of curvature values

in the track: it is maximum when all the curvature values

occupy the same percentage of the track that is ci = 1/16 for

all the i; it is minimum when all the curvature values belong

to the same bin, that is, there is an i such that ci is one. Note

that, we determined the number of bins (16) empirically as

the best trade-off. In fact, an analysis we performed showed

that a small number of bins (e.g., 2 or 4) would tend to

produce too simple profiles which could not capture many

of the difference between similar tracks. On the other hand, a

larger number of bins (e.g., 32 or 64) would tend to produce

too fine-grained profiles with several empty.

As an example, Table I reports the curvature profiles of

four tracks available in the TORCS distribution, listed in

increasing entropy value. The first track, D-Speedway, has an

oval shape with a long straight and two long turns with large

curvature radius r; accordingly, all the track segments belong

to the central bin corresponding to near zero curvatures.

In fact, since the curvature of a turn is computed as 1/r
and the curvature of a straight is zero, both straights and

large-radius bends have near zero values. As the number

and model of different track segments increases, the track

diversity increases too so that the curvature profile tends to

include other bins corresponding to values quite far from

zero (see for instance, the track Aalborg). The last track,

Spring, provides the greatest diversity with a good variety of

bends; as a consequence, the majority of the sixteen bins are

covered by some track segments.

B. Evaluation Based on Speed Profiles

The second measure of track diversity we considered

is based on the distribution of the achievable speeds. The

underlying idea is that tracks are different not only because

they look different (they have different types and distribution

of turns and straights) but also because they allow for a wide

variety of speeds. Therefore, we defined the track diversity

in terms of achievable of speed as the entropy of its speed

profile which we computed as follows.

TABLE I

CURVATURE PROFILES IN FOUR OF THE TRACKS AVAILABLE WITH TORCS.

Track Name Profile Shape

D-Speedway

Wheel-2

Aalborg

Spring

TABLE II

SPEED PROFILES IN SOME TRACKS OF THE TORCS PACKAGE

Track Name Profile Shape

D-Speedway

Aalborg

Forza

Wheel-2

As the very first step, we let several TORCS bots drive in

all the available (human-designed) tracks for several laps and

collected the car speed during each game tick; this produced

the distribution of the feasible speed values over all the

human-designed tracks. Then, we partitioned the range of

feasible speeds into sixteen bins (b1, . . . , b16), as we did for

curvature profiles.

Given a new track ~t, we measure its speed diversity as the

entropy of its speed profile, which we compute as follows.

Firstly, we have a bot completing three laps on the track ~t
and, during the second lap, we measure the car speed for

each game tick. Next, we generate the speed profile S =
{s1, . . . , s16}, using the previously generated bins, where si
is the percentage of game ticks, in the second lap, that the

car raced with a speed corresponding to the bin i. Finally,

we compute the entropy of the track speed profile as,

H(S) = −
16∑

i=1

si log2 si (2)

As before, H(S) ≥ 0 and H(S) ≤ log2 16. The entropy

H(S) measures the diversity in the distribution of speed

values over the track: it is maximum when the car spent

the same amount of time in all the speed ranges si = 1/16
for all the i; it is minimum when the car spent most of the

time in the same speed range, that is, there is an i such that

si is one.

Table II reports the speed profiles of four tracks available

in TORCS, listed in increasing entropy value. The oval track

D-Speedway, which did not provide much diversity in terms

of curvature profile, does not provide much diversity also

in terms of speed. Its long bends and long straights allows

the driver to keep basically the same high speed range all

the time. In fact, all the recorded speed values fall into the

last bin. The second track, Aalborg has several narrow bends

that result in a speed profile skewed toward the lower speeds.

In contrast, Forza has several fast stretches and few bends

of rather different curvature accordingly its speed profile

is skewed towards higher speeds; on the other hand, the

rather different curvatures of the few bends in Forza allows

the car to cover almost all the possible speed ranges. The

fourth track, Wheel-2, is one the track providing the highest

degree of diversity among all the one available in TORCS

as demonstrated by the well-balanced and almost uniformly

distributed speed profile.

C. Discussion

Wheel-2 and Aalborg are good examples of how the two

diversity measures we introduced actually estimates two very

different ideas of diversity. When the topology is concerned,

although Wheel-2 looks more articulated than Aalborg, it

turns out that Wheel-2 provides less diversity than Aalborg

since most of its turns and bends have similar curvatures. In

contrast, Aalborg has several long stretches but also many

turns of very different radius which provide more diversity

than Wheel-2. On the other hand, when speed is concerned,

Wheel-2 provides more diversity than Aalborg because its

balanced combination of many soft turns and few tight turns,

which allows the drivers to cover basically all the possible

speed ranges. In contrast, the many different tight turns

of Aalborg restrict the driver towards the lower scale of

the speed range. Even when the car is driving along the

stretches, the car speed cannot increase too much because

of the incoming very tight turns. In fact, the two measures

we introduced are only slightly overlapping since there are

very few tracks with qualitatively similar curvature and speed

profiles (e.g., D-Speedway or other ovals). Accordingly, in

this work we investigated both the application of (i) single-

objective evolution to maximize the diversity for each one

of the two criteria (Section VII-A and Section VII-B) and

(ii) multi-objective evolution to search for a good trade-off

between the two (Section VII-C).

Finally, we wish to point out that, although the entropy

of curvature profiles provides a more intuitive idea of track

diversity (that it is related to a visual property) and it simpler

to compute (since no racing is involved), it actually poses

much tighter constraints than the entropy of speed profiles.

In fact, the entropy of a curvature profile is maximal when

the track contains the same percentage of turns with all

the feasible curvature values. In contrast, the entropy of

a track speed profile is maximal when the driver has to

cover all the possible speed ranges for the same amount

of racing time. Accordingly, while high-entropy curvature

profiles correspond to rather complex (and difficult to evolve)

track topologies, high-entropy speed profiles are possible

even in simpler (and easier to evolve) topologies.

VII. EXPERIMENTAL RESULTS

We tested our approach by applying single-objective and

multi-objective real-coded genetic algorithms to evolve tracks

with a large degree of diversity both in terms of curvature

profile (i.e., the number and types of turns and straights) and

in terms of speed profile. For this purpose, we performed

three sets of experiments respectively focused on the maxi-

mization of (i) the entropy of curvature profiles (i.e., of the

shape diversity), of (ii) the entropy of speed profiles (i.e.,

of the speed diversity) and (iii) the search of a good trade-

off between these two measures. All the experiments were

performed using the implementations of the single and multi-

objective genetic algorithms available in Sastry’s genetic

algorithm toolbox [22] while for the evaluation of tracks was

performed using TORCS 1.3.1.

A. Maximizing the Entropy of Curvature Profiles

In the first set of experiments, we applied a single-

objective real-coded genetic algorithm in which individuals

are tracks encoded using 5, 10, or 15 control points (Sec-

tion V) and the fitness function is computed as the entropy

of the track curvature profile (Section VI); individuals corre-

sponding to infeasible (open) tracks receive a zero fitness;

in addition, since the track generator of TORCS cannot

deal with track intersections, we penalized the fitness of

individuals by 0.5 for each intersection. The parameters of

the genetic algorithm were set as follows [22]: the mutation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

A
V

E
R

A
G

E
 F

IT
N

E
S

S
 O

F
 C

LO
S

E
D

 T
R

A
C

K
S

GENERATION

5 Points
10 Points
15 Points

(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

N
U

M
B

E
R

 O
F

 C
LO

S
E

D
 T

R
A

C
K

S
 (

%
 o

f N
)

GENERATION

5 Points
10 Points
15 Points

(b)

Fig. 5. Single-objective genetic algorithm using the entropy of curvature
profiles as fitness function and a track encoding involving 5, 10 and 15
control points: (a) average fitness of the closed tracks in the population; (b)
percentage of individuals that represent a feasible (closed) track. Curves are
averages over ten runs.

probability was 0.1 while the crossover probability was 0.9;

the population size was set to 50, 100, and 150 individuals

for tracks represented using 5, 10, and 15 control points, re-

spectively; selection is performed using tournament selection

with a tournament size of 2; the process ended as soon as

300 generations were completed.

Figure 5 reports the average population fitness (Figure 5a)

and the percentage of individuals in the population which

represent feasible (closed) tracks (Figure 5b). As can be

noted, the higher the number of control points used to

represent the tracks is, the more complex the search space

becomes. In particular, as the number of control points

increases, the evolution of high entropy individuals becomes

more difficult: when tracks are represented using 10 or 15

control points, the average fitness of the population grows

more slowly and reaches a smaller entropy value when

the process ends (Figure 5a). Similarly, as the number of

control points increases, it becomes more and more difficult

to generate valid tracks and the percentage of valid (closed)

tracks in the population grows much slower than fewer points

(Figure 5b). It is important to stress that the genetic algorithm

can always increase the number of closed tracks consistently

as the generations proceed. For instance, when individuals

encode 15 control points, only the 5% of the initial ran-

domly generated population consists of valid (closed) tracks;

however, after 300 generation, slightly more than the 56% of

the individuals in the final population represent valid tracks.

The results for the tracks encoded using 15 control points

suggest that the problem of generating valid tracks is not

trivial and in fact, a random population contains quite a small

percentage of valid tracks. On the other hand, the evolu-

tionary approach we propose appears to be rather successful

in that it can actually produce a significant increase both

in terms of diversity, as the average fitness reaches a near-

optimal value (Figure 5a), and in terms of number of valid

tracks evolved, as their number reaches a tenfold increase

(Figure 5a).

Figure 6 reports the best track evolved for each of the

ten runs of the genetic algorithm when 5 control points

(Figure 6a), 10 control points (Figure 6b), and 15 control

points (Figure 6c) are used. As should be expected, as the

number of control points increases, also the complexity of

the evolved tracks increases, making the maximization of

the entropy of curvature profiles more difficult. In fact, the

best tracks evolved using 5 control points (Figure 6a) have a

slightly higher fitness than the best tracks evolved using more

control points. From the one hand, this result suggests that 5

control points are enough to evolve tracks which (i) include

a quite large range of different turns (in terms of radius) and

(ii) are also well-balanced, in that they provide a good mix

of different types of turns and straights. On the other hand,

with more than 5 control points, it is still possible to evolve

tracks featuring a wide range of different turns and straights,

but it might be difficult to obtain well-balanced tracks.

Finally, it is worth noticing that not all the tracks include

straights. This is not surprising and depends on the way we

compute the curvature profile for a track. In fact, according

to our definition of curvature profile, both straights and turns

with very large radius of curvature are basically identical in

terms of profile since they belong to the same discretization

bin. As a consequence, evolution will tend to evolve tracks

featuring turns with with small curvature turns (or with very

large radius of curvature) instead of simple straights.

B. Maximizing the Entropy of Speed Profiles

We repeated the same set of experiments, using the same

parameter settings, while computing the fitness of a track as

the entropy of its speed profile. Also in this case, we penal-

ized the fitness of individuals by 0.5 for each intersection.

Figure 7 reports the average population fitness (Figure 7a)

and the percentage of feasible (closed) tracks in the popula-

tion (Figure 7b) as a function of the number of generations.

As in the previous set of experiments involving curvature

profiles, a higher number of control points results in a

slower convergence to high entropy individuals (Figure 7a).

In contrast to what happened with the curvature-based fitness,

in this case, all the average population fitnesses converge

almost to the same near-optimal value. This result can be

easily explained by considering that, as we previously noted

H(C) = 3.21 H(C) = 3.20 H(C) = 3.31 H(C) = 3.32 H(C) = 3.26

H(C) = 3.54 H(C) = 3.62 H(C) = 3.35 H(C) = 3.31 H(C) = 3.43

(a)

H(C) = 2.96 H(C) = 3.02 H(C) = 3.36 H(C) = 3.58 H(C) = 2.92

H(C) = 3.12 H(C) = 3.16 H(C) = 3.17 H(C) = 3.09 H(C) = 3.15

(b)

H(C) = 2.84 H(C) = 2.78 H(C) = 2.75 H(C) = 3.05 H(C) = 2.95

H(C) = 2.79 H(C) = 3.08 H(C) = 2.92 H(C) = 2.77 H(C) = 2.88

(c)

Fig. 6. The best tracks evolved for each run using the entropy of curvature profiles when the tracks are encoded using (a) 5 control points, (b) 10 control
points, and (c) 15 control points; for each track is also reported H(C), the entropy of the curvature profiles.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

A
V

E
R

A
G

E
 F

IT
N

E
S

S
 O

F
 C

LO
S

E
D

 T
R

A
C

K
S

GENERATION

5 Points
10 Points
15 Points

(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

N
U

M
B

E
R

 O
F

 C
LO

S
E

D
 T

R
A

C
K

S
 (

%
 o

f N
)

GENERATION

5 Points
10 Points
15 Points

(b)

Fig. 7. Single-objective genetic algorithm using the entropy of speed
profiles as fitness function and a track encoding involving 5, 10 and 15
control points: (a) average fitness of the closed tracks in the population; (b)
percentage of individuals that represent a feasible (closed) track. Curves are
averages over ten runs.

in Section VI, it is generally easier to evolve tracks with

high entropy speed profiles than it is for curvature profiles

because of the tighter constraints they pose.

The plot for the percentage of closed tracks in the popu-

lation (Figure 7b) also confirms our previous findings: as

the number of control points used to represent the track

increases, the evolution of valid closed tracks becomes

more difficult. In fact, a higher number of control points

corresponds to an initial random population mainly made of

infeasible (open) tracks: with 10 control points only around

the 30% of the random tracks are closed, with 15 control

points only around the 5% of the random tracks are closed.

Also in this case however, the evolutionary process can

successfully get rid of infeasible individuals so as to converge

to a population containing mainly valid tracks with high

entropy values. In particular, it is worth noticing that the

percentage of valid tracks in the final population evolved

using speed profiles (Figure 7b) is much higher than the one

obtained using curvature profiles (Figure 5b).

Figure 8 reports the best tracks evolved during each one

of the ten runs involving 5 control points (Figure 8a), 10

control points (Figure 8b), and 15 control points (Figure 8c).

Figure 8 confirms our previous findings in that 5 control

points seem enough to evolve tracks with a large degree of

diversity which, in this case, means tracks involving a wide

range of turns and straights and uniformly distributed variety

of speed values over the lap. In this case however, in contrast

to what happens for curvature profiles, the tracks evolved

using 10 and 15 control points achieve almost the same high

entropy values as the tracks evolved using only 5 control

points.

C. Searching for a Trade-off Using Multi-Objective GAs

The results for the single-objective genetic algorithm show

that the fitness based on curvature profiles produces tracks

with a rather broad range of turns, from hairpin to very

large and fast bends, while the fitness based on speed

profiles produces tracks with a good balance of fast and

slow stretches, leading to a rich and challenging driving

experience. Early on, in Section VI, we argued that these

two fitness definitions capture rather different ideas of diver-

sity. We tested our hypothesis empirically by analyzing the

correlation between the entropy of curvature profiles and the

entropy of speed profiles using a set of 1000 tracks evolved

using the same single-objective genetic algorithms used in

the previous experiments. Our analysis returned a correlation

coefficient of 0.56 suggesting that the two fitness definitions

are not highly correlated and that a track with a high entropy

curvature profile does not necessarily have a high entropy

speed profile. Accordingly, we applied a multi-objective

genetic algorithm to evolve tracks, encoded with 5, 10, and

15 control points, which could maximize the two objective at

the same time. For this purpose, we used the same parameters

settings used in the previous experiments; offspring selection

was performed using the Non-Dominated Sorting Genetic

Algorithm (NSGA-II) implementation available in Sastry’s

genetic algorithm toolbox [23], [22].

Figure 9 reports, for each encoding, three representatives

of the Pareto front evolved after 300 generations and the

overall Pareto front. All the results agree in that the three

Pareto fronts (Figure 9d-5, d-10 and d-15) clearly show

that there is a conflict between the two objectives, i.e., the

maximization of diversity in terms of curvature and in terms

of speed profiles. Nevertheless, the evolved Pareto fronts

contains very different tracks models providing both a very

good trade-off between the two competing objectives with a

nice balance between the variety of turns and a rich driving

experience.

Interestingly, the best solutions evolved by the multi-

objective genetic algorithm have very high (sometime near-

optimal) entropy values both in terms of curvature and speed

profiles suggesting that multi-objective evolution is probably

the best approach to tackle this application.

VIII. VALIDATION

We performed a preliminary validation of our approach on

human subjects. Our aim was to test whether an agreement

exists between our fitness definitions and users preferences.

For this purpose, we designed two surveys, one focused on

H(S) = 3.89 H(S) = 3.88 H(S) = 3.90 H(S) = 3.90 H(S) = 3.89

H(S) = 3.89 H(S) = 3.90 H(S) = 3.89 H(S) = 3.86 H(S) = 3.85

(a)

H(S) = 3.91 H(S) = 3.90 H(S) = 3.90 H(S) = 3.90 H(S) = 3.91

H(S) = 3.91 H(S) = 3.91 H(S) = 3.91 H(S) = 3.91 H(S) = 3.91

(b)

H(S) = 3.90 H(S) = 3.91 H(S) = 3.91 H(S) = 3.91 H(S) = 3.91

H(S) = 3.91 H(S) = 3.91 H(S) = 3.91 H(S) = 3.90 H(S) = 3.91

(c)

Fig. 8. The best tracks evolved for each run using the entropy of speed profiles when the tracks are encoded using (a) 5 control points, (b) 10 control
points, and (c) 15 control points; for each track is also reported H(S), the entropy of the speed profiles.

(a-5) Track A (b-5) Track B (c-5) Track C (a-10) Track A (b-10) Track B (c-10) Track C

 1.5

 2

 2.5

 3

 3.5

 4

 1.5 2 2.5 3 3.5 4

E
N

T
R

O
P

Y
 O

F
 C

U
R

V
A

T
U

R
E

 P
R

O
F

IL
E

S

ENTROPY OF SPEED PROFILES

 Track A

 Track B

 Track C

 1.5

 2

 2.5

 3

 3.5

 4

 1.5 2 2.5 3 3.5 4

E
N

T
R

O
P

Y
 O

F
 C

U
R

V
A

T
U

R
E

 P
R

O
F

IL
E

S

ENTROPY OF SPEED PROFILES

 Track A

 Track B

 Track C

(d-5) (d-10)

(a-15) Track A (b-15) Track B (c-15) Track C

 1.5

 2

 2.5

 3

 3.5

 4

 1.5 2 2.5 3 3.5 4

E
N

T
R

O
P

Y
 O

F
 C

U
R

V
A

T
U

R
E

 P
R

O
F

IL
E

S

ENTROPY OF SPEED PROFILES

 Track A

 Track B

 Track C

(d-15)

Fig. 9. Multi-objective genetic algorithms applied to evolve tracks encoded using 5, 10, and 15 control points; to represent the tracks: Track A, Track B,
and Track C are examples of track evolved for different sections of the pareto; (d-5), (d-10) and (d-15) are examples of final pareto front evolved after
300 generations.

the visual properties of evolved tracks, one focused on the

actual playing experience.

A. Design of the Surveys

The two surveys were completely anonymous, the only

personal information required from the subjects was (i) their

age and (ii) how often they play racing games (choosing from

often, occasionally, or never).

The first survey focused on the subjects visual preferences.

It consisted in a paper form with 20 black and white

pictures of tracks, evolved based on their curvature profile;

the pictures were organized in pairs and they were similar

to the ones used in this paper. Of the ten pairs, (i) two

compared tracks evolved using 5 control points, (ii) two

compared tracks evolved using 10 control points, (iii) two

compared tracks evolved using 15 control points, while (iv)

four compared tracks evolved using a different number of

control points. For each one of the ten pairs printed on the

paper form, the subjects had to choose the track they liked

best; the subjects could also select none of the tracks; for

each pair a small area was also provided so that people could

leave a comment if they wished. This survey basically aimed

at testing the visual users preferences and roughly simulated

the race setup in TORCS where the user selects the track

based only on its plain shape.

The second survey focused on the player experience and

involved 42 human subjects. For each subject, the survey

involved three playing sessions. The first session consisted

of a warm-up session where the subject can experience

the control system of TORCS driving in a simple track

provided with the standard distribution of TORCS. Then,

in the following two playing sessions we asked the subjects

to complete two laps on two different tracks evolved by the

multi-objective genetic algorithm. At the end of the playing

sessions, subjects had to answer to the following questions

on the two tracks tested: (i) which one they preferred, (ii)

which one they found more challenging, and (iii) on which

one they would like to race again.

Note that, since Survey A focuses on the visual charac-

teristics of tracks, its collected data can only be analyzed

in terms of curvature profiles; in contrast, since Survey B

focuses on the actual playing experience, its collected data

can only be analyzed in terms of speed profiles.

B. Analysis of the Visual Preferences

The first survey involved 59 human subjects randomly

selected from the students attending the course of Videogame

Design and Programming20 at the Politecnico di Milano.

We analyzed the collected data to test the agreement

between the subjects preferences and the track fitness used to

evolve the tracks (i.e., the entropy of curvature profiles). In

particular, to avoid any possible bias, we initially considered

only pairs in which both tracks were encoded with the same

number of control points. The analysis shows that of all

the 349 collected preferences, slightly more than the 60%

(or 210) agreed with the fitness measures, i.e., the entropy

of the track curvature profile. We tested whether this result

is statistically significant by applying the same procedure

used in several previous works [24], [25]. More precisely,

we computed the p-value as the probability according to

a binomial distribution (with p=0.5) of obtaining the same

number of successful outcomes or more over the given

number of trials. In this case, the probability of obtaining

210 or more successful outcomes over 349 trials is 5.5·10−5,

indicating that there is a statistically significant agreement

between the fitness and the subjects preferences.

We repeated the analysis on the three data sets containing

only one type of encoding (the one using 5 control points,

the one using 10 control points, and the one using 15

control points). The results show that the agreement between

the subjects’ preferences and the fitness diminishes as the

number of control points increases. When we consider only

the tracks encoded using 5 control points, the agreement is

around the 69.8% (i.e., 81 over 115 cases agree with the

fitness); the agreement drops to the 56.4% with 10 control

20http://games.ws.dei.polimi.it

points (i.e., 66 cases over 117 agree) and to the 54.3% with

15 control points (i.e., 63 cases over 116 agree).

We also analyzed the relation between the subjects’ pref-

erences and their experience with racing games. The results

show that the agreement between the subjects’ preferences

and the curvature-based fitness increases with the subjects’

experience. In subjects with an extremely poor experience

with racing games, only the 52% of the preferences agrees

with the fitness and the correlation is not statistically signif-

icant (p-value>0.05). However, when subjects who declared

to play racing games often, we have that the agreement

reaches the 64.4% and, when we restrict the analysis to

tracks encoded with 15 control points, the agreement reaches

the 73.3%. Noticeably, both these results are statistically

significant with a p-value equal to 0.018. Overall, these

results suggest that the curvature-based fitness we proposed

might not be the best way to capture the preferences of

inexperienced players.

C. Analysis of the Playing Preferences

The second survey involved 42 human subjects, randomly

selected from the visitor of the Politecnico’s open-university

day, who raced on two different tracks, randomly selected

among two different sets. The first set of tracks contained

six tracks randomly selected from the Pareto fronts evolved

in the experiments discussed in Section VII-C using a multi-

objective algorithm. The second set contained other six

control tracks, with lower fitness values (both in terms of

speed and curvature profiles), that were randomly selected

from the early populations. To avoid any bias related to the

playing order, during each test, a script randomly selected

whether the experiment would start with a track from the

Pareto front or with one from the control group. After a

subject completed two laps, on each track, the subject was

asked (i) which track he/she found more challenging, (ii)

which track he/she would race again, and (iii) which racing

experience he/she preferred; in addition, subjects were also

allowed to leave a short comment to motivate their choices.

Our data show that the evolved tracks are the most

challenging basically for all the human subjects (92.86%);

when asked which track they would play again, 30 out

of 42 human subjects (71.43%) prefer the evolved tracks

from the Pareto front. However, when evaluating their actual

racing experience on the two tracks, solely 22 subjects over

42 (52.38%) prefer the evolved tracks. The comments left

by the subjects suggest that the evolved tracks might be

too challenging for inexperienced players who generally

preferred racing on the simpler control track. This bias results

in a rather low 52.38% preference toward the tracks from the

Pareto front. It should be noted however that, notwithstanding

their low performance on the evolved tracks and the higher

perceived challenge, several of such inexperienced players

still wish to rerace the more difficult evolved track. This

suggests that for these subjects the evolved tracks were

challenging but not frustrating and thus they were encouraged

and willing to try them again.

To rule out the bias due to inexperience we repeated

the same analysis on the the data collected from the most

experienced subjects. When we consider only the 14 subjects

(33%) with more experience in racing games, we note that,

(i) all the subjects find the evolved tracks more challenging,

(ii) most of them (12 out of 14 or 85.71%) would choose the

evolved track to play again, and (iii) the evolved tracks are

preferred by 10 subjects out of 14 (71.43%). These results

suggest that, although overall preferred by only 52.38% of

the subjects, the evolved tracks are very appealing to subjects

with some experience in racing games. In fact, 71.43% of

the subjects prefer them and 85.71% of the subjects wish to

replay them.

Finally, we applied the same statistical procedure used in

the previous survey. The analysis shows that all the results

are statistically significant (p-value<0.05) except for the one

showing that 52.38% of subjects prefer the evolved track.

IX. CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

We introduced an evolutionary approach for the automatic

generation of tracks for a high-end open-source car racing

simulator (TORCS) [4]. Our approach is inspired by the

seminal works that Togelius et al. [5], [6], [7] did on the

evolution of racing tracks for a simple 2D arcade racing

game which, to the best of our knowledge, is also the

only published work on the evolution of racing tracks. In

particular, our track encoding is an extension of the radial

representation proposed in [6]. As in [6], we use an indirect

encoding and represent a track as a set of control points in a

polar coordinate systems; however, while in [6] only radial

coordinates are evolved, in our case, evolution works both

on the radial coordinates and on the angular coordinates; in

addition, our representation also includes, for each control

point, the slopes of the corresponding track tangent line.

One of the major difference with respect to the work of

[5], [6], [7] is in the way we evaluate racing tracks which, in

our case, is based on the maximization of the track diversity

both in terms of shape (e.g., the types and number of turns

and straights) and in terms of achievable driving speed (as

opposed to the fitting of a target player profile [5], [6], [7]).

In particular, for a given track, we derive its curvature profile

and its speed profile; then, we compute the track fitness using

either the entropy of its curvature profile or the entropy of

its speed profile.

We performed three sets of experiments involving single-

objective and multi-objective genetic algorithms to evolve

tracks encoded using 5, 10, and 15 control points. Our

results show that both single-objective and multi-objective

approaches generate a wide variety of feasible TORCS tracks

with a high degree of diversity both in terms of shape

and in terms of achievable speeds. In particular, multi-

objective evolution can successfully evolve rich Pareto fronts

containing large numbers of feasible tracks which provide a

good trade-off between the two competing objectives (i.e.,

having a rich structure while also providing an articulated

driving experience in terms of achievable speed).

It is worth examining computational cost of the overall

process. In our framework, one run of most demanding

configuration (consisting of 300 generations using a pop-

ulation of 150 individuals) using only one core of a 2

quad-core Xeon (2.66 GHz), 8GB of RAM, takes between

1.5 to 3 hours. Although the overall process might appear

“expensive”, it should be noted that it is instead rather

inexpensive when compared to the cost required by a human

designer to come up with a TORCS track.

We also performed a preliminary validation of the pro-

posed approach with human subjects to test whether there

exists an agreement between our fitness definitions and users’

preferences. For this purpose, we designed two surveys, one

focused on the subjects’ visual preferences and one focused

on their playing experience. Our preliminary results suggest

that there is a statistically significant agreement between

the subjects’ visual preferences and our fitness definitions;

overall, it appears that the agreement is stronger for simpler

tracks (encoded with fewer control points) and when more

experienced players are considered.

The results of the second survey, focused on the playing

experience, suggests that the (evolved) tracks with a higher

degree of diversity are perceived as more challenging (ac-

cording to 92.86% of the subjects). Such level of challenge,

however, does not prevent subjects from finding our evolved

tracks appealing. In fact, although only 52.38% of all the

subjects prefers racing on an evolved track, 71.43% of them

wish to race again the (evolved) track with higher diversity

instead of the control track with a lower degree of diversity.

More interestingly, subjects with some experience in racing

games show a stronger preference toward tracks with a higher

degree of diversity. In fact, our results show that our evolved

tracks have been preferred by 71.43% of the subjects that

are familiar with racing games and 85.71% of those subjects

wish to play them again.

As a proof of concept, while we were performing the

experiments discussed in this paper, we selected two of the

tracks evolved using the multi-objective genetic algorithm

for the 2010 Simulated Car Racing Championship, an event

joining three scientific competitions held at the ACM Genetic

and Evolutionary Computation Conference (GECCO-2010),

at the IEEE World Congress on Computational Intelligence

(WCCI-2010), and at the IEEE Conference on Computational

Intelligence and Games (CIG-2010). Figure 10 and Fig-

ure 11 show the track Wild-Speed and the track Rocky

which were used during the second leg and the third leg of

the championship. The evolved tracks were not modified and

their shapes are just the result of the evolutionary process.

We added however some scenic elements to make them more

attractive for the competition attendees (for instance, we

added a terrain, some trees, and changed the roadbed).

Search-based procedural content generation is a very

promising research area and, in our opinion, the automatic

generation of racing tracks is a very interesting direction de-

serving further investigation. In particular, our future research

directions include (i) the extension for the evolution of richer

(a)

(b)

(c)

Fig. 10. The track Wild-Speed used in the second leg of the 2010
Simulated Car Racing Championship held at WCCI-2010, Barcelona, Spain:
(a) the shape of the track, (b) and (c) screenshots of the track in the game.

representations (e.g., by including some scenic elements such

as the terrain); (ii) an improved analysis with human subjects

designed to obtain a better evaluation of the metrics we

proposed; last but not least, (iii) the addition of some sort

of user intervention in the evolutionary process to hybridize

the process with some human guidance.

X. ACKNOWLEDGEMENTS

The authors wish to thank Marco Colombo for his work

on the preliminary implementation of the mapping procedure

between genotypes and phenotypes.

REFERENCES

[1] J. E. Laird and J. Schaeffer, Eds., Procedural Level Design for

Platform Games. The AAAI Press, 2006.
[2] MIGS: Far Cry 2’s Guay On The Importance Of Procedural Con-

tent, Nov. 2008, http://www.gamasutra.com/php-bin/news\ index.php?
story=21165.

(a)

(b)

(c)

Fig. 11. The track Rocky used in the third leg of the 2010 Simulated
Car Racing Championship held at CIG-2010, Copenhagen, Denmark: (a)
the shape of the track, (b) and (c) screenshots of the track in the game.

[3] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in EvoApplications (1), ser.
Lecture Notes in Computer Science, C. D. Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekárt, A. Esparcia-Alcázar, C. K. Goh, J. J. M. Guervós,
F. Neri, M. Preuss, J. Togelius, and G. N. Yannakakis, Eds., vol. 6024.
Springer, 2010, pp. 141–150.

[4] “The open racing car simulator website.” [Online]. Available:
http://torcs.sourceforge.net/

[5] J. Togelius, R. D. Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” in Proceedings of the SAB

Workshop on Adaptive Approaches to Optimizing Player Satisfaction,
2006, available at http://julian.togelius.com/Togelius2006Making.pdf.

[6] J. Togelius, R. De Nardi, and S. Lucas, “Towards automatic person-
alised content creation for racing games,” in Proc. IEEE Symposium on

Computational Intelligence and Games CIG 2007, 2007, pp. 252–259.
[7] J. Togelius, S. M. Lucas, and R. D. Nardi, “Computational intelligence

in racing games,” in Advanced Intelligent Paradigms in Computer

Games, ser. Studies in Computational Intelligence, N. Baba, L. C.
Jain, and H. Handa, Eds. Springer, 2007, vol. 71, pp. 39–69.

[8] R. Frushtick, “Borderlands Has 3,166,880 Different Weapons,” July
2009, http://multiplayerblog.mtv.com/2009/07/28.

[9] A. Doull, “The death of the level designer,” Jan. 2008, http://pcg.

wikidot.com/the-death-of-the-level-designer.
[10] E. Hastings, R. Guha, and K. Stanley, “Neat particles: Design, repre-

sentation, and animation of particle system effects,” in Proc. IEEE

Symposium on Computational Intelligence and Games CIG 2007,
2007, pp. 154–160.

[11] K. O. Stanley and R. Miikkulainen, “Evolving neural network through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[12] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content
in the galactic arms race video game,” in Computational Intelligence

and Games, 2009. CIG 2009. IEEE Symposium on, Sept. 2009, pp.
241–248.

[13] J. Marks and V. Hom, “Automatic design of balanced board games,”
in AIIDE, J. Schaeffer and M. Mateas, Eds. The AAAI Press, 2007,
pp. 25–30.

[14] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Computational Intelligence and Games, 2008. CIG ’08.

IEEE Symposium On, Dec. 2008, pp. 111–118.
[15] M. Frade, F. F. de Vega, and C. Cotta, “Modelling video games’

landscapes by means of genetic terrain programming - a new approach
for improving users’ experience,” in Applications of Evolutionary

Computing, ser. LNCS, M. G. et al., Ed., vol. 4974. Napoli, Italy:
Springer, 2008, pp. 485–490.

[16] J. Koza, Genetic Programming. MIT Press, 1992.
[17] M. El-Nasr, A. Vasilakos, C. Rao, and J. Zupko, “Dynamic intelli-

gent lighting for directing visual attention in interactive 3-d scenes,”
Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 1, no. 2, pp. 145–153, June 2009.

[18] M. Zheng and D. Kudenko, “Automated event recognition for football
commentary generation,” in Proc. AISB’09 Symposium: AI & GAMES,
2009.

[19] C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player ex-
perience for content creation,” Computational Intelligence and AI in

Games, IEEE Transactions on, vol. 2, no. 1, pp. 54 –67, mar. 2010.
[20] J. Togelius, M. Preuss, N. Beume, J. H. Simon Wessing, and G. N.

Yannakakis, “Multiobjective exploration of the starcraft map space,”
in Proceedings of the 2010 IEEE Conference on Computational

Intelligence and Games. Copenhagen, Denmark, 18-21 August 2010.:
IEEE, 2010, pp. 265–262.

[21] N. Sorenson and P. Pasquier, “Towards a generic framework for
automated video game level creation,” in EvoApplications (1), ser.
Lecture Notes in Computer Science, C. D. Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekárt, A. Esparcia-Alcázar, C. K. Goh, J. J. M. Guervós,
F. Neri, M. Preuss, J. Togelius, and G. N. Yannakakis, Eds., vol. 6024.
Springer, 2010, pp. 131–140.

[22] K. Sastry, “Single and multiobjective genetic algorithm toolbox in
C++,” Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Tech. Rep., IlliGAL Report No. 2007016, 2007.

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm,” IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, vol. 6, no. 2, Apr. 2002.
[24] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment

in computer games,” Appl. Artif. Intell., vol. 21, no. 10, pp. 933–971,
2007.

[25] C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player ex-
perience for content creation,” Computational Intelligence and AI in

Games, IEEE Transactions on, vol. 2, no. 1, pp. 54 –67, 2010.
[26] C. D. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. Esparcia-

Alcázar, C. K. Goh, J. J. M. Guervós, F. Neri, M. Preuss, J. Togelius,
and G. N. Yannakakis, Eds., Applications of Evolutionary Compu-

tation, EvoApplicatons 2010: EvoCOMPLEX, EvoGAMES, EvoIASP,

EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Istanbul, Turkey, April

7-9, 2010, Proceedings, Part I, ser. Lecture Notes in Computer
Science, vol. 6024. Springer, 2010.

